
Using motion capture to recognize affective states in humans 
Nadia Bianchi-Berthouze 

 UCLIC, University College London, London, UK, n.berthouze@ucl.ac.uk 
 
Humans convey and recognize affective states from a broad 
spectrum of verbal and nonverbal modalities.  An historical 
focus on face as a primary modality for conveying and 
recognizing emotions spurred the computer science 
community to research methods for computer systems to 
automatically recognize emotions from facial expressions. 
Today, the Facial Action Coding System (FACS) [1] is the 
most popular standard for systematically categorising (facial) 
expressions of emotions. Recent psychology studies, however, 
have revealed that another form of nonverbal communication, 
body posture, can prove a very good indicator for various 
categories of emotion. Whilst these studies have been used 
rather effectively to enable artificial systems to express 
affective behaviour through posture (e.g., Sony’s AIBO), 
posture still has no equivalent to FACS and most existing 
studies use only coarse-grained posture descriptors (e.g. 
leaning forward, slumping back). 

Over the last 5 years, my research has been focused on 
investigating the extent to which low-level features of body 
postures provide the information necessary to recognize not 
only basic emotional states but also more subtle nuances, 
cross-cultural differences, and affective dimensions. In this 
paper, I briefly review how I used motion capture to 
understand how humans recognize affective states from 
postures and how build automatic affective posture 
recognition models that could make technology more 
engaging.  

Low-level description of posture 
To establish the groundwork for a FACS-like formal model, 
we used motion capture to record 3D affective gestures from 
actors of different age, gender and race. Each actor was asked 
to perform an in-place gesture expressing happiness, sadness, 
fear or anger. The actors were not forced in their acting, but 
were allowed to express the emotions in their own natural 
way. The actors were not allowed to observe each other during 
performance. Each actor was dressed in a suit with 32 markers 
on the joints and body segments. 32 markers provide sufficient 
information to describe the posture. Each gesture was captured 
by 8 cameras and represented by consecutive frames 
describing the position of the 32 markers in the 3D space. A 
total of 109 gestures were collected. For each gesture, we 
selected the frame (i.e., a static posture) that the actor 
evaluated as being the most expressive instant of the gesture. 
Each frame was described using 24 posture features, chosen 
based on the concept of ‘‘sphere of movement’’ used in dance 
to convey emotion. Direction and volume of the body were 
described by projecting each marker on the 3 orthogonal 
planes and measuring the lateral, frontal and vertical extension 
of the body. Each posture was initially rotated to simulate a 
frontal view of the posture. The features computed include 
rotation angles describing head and torso configurations as 
well as a series of distances between key anatomical 
landmarks. Each feature was normalized according to the body 
structure of the actor, i.e., according to the maximal extension 
of his/her body. For example, the lateral opening of the right 
arm was computed by the ratio of the distance between the 
right hand and the left shoulder along the X-direction, and the 
maximum lateral extension of the arm. In [2], we showed how 
a trained associative neural network could successfully 
classify just over 70% of 102 postures extracted from natural 

human motion capture data. Adding a measure of the direction 
of the movement to the postural descriptor allowed for a 
significant improvement (+8%) of postures that showed the 
lowest inter-observer agreement [3]. In [4], we tested the 
informational content of the posture descriptors by applying 
mixed discriminant analysis (MDA) and looking at whether 
the features could account for different levels (high, low) of 
three affective dimensions: arousal, valence and action 
tendency. The results showed a 1% error on arousal, 20% on 
valence and 25% on action tendency. Finally, we showed that 
by using both supervised and unsupervised learning 
mechanisms, nuances of emotions could be recognized from 
these low-level features, with performance similar to that of 
human observers [5].  

How do people interpret affective posture? 
The above motion data enabled us to create faceless computer 
characters to build an understanding of how people interpret 
affective postures. Using the above descriptive system, our 
studies revealed significant effects of both culture [6] and 
gender [7] on the affective appraisal of body postures. 
Interestingly, our set of low-level feature descriptors did also 
provide a mechanistic explanation to recent findings in 
neuroscience suggesting that the face fusiform area (FFA) – 
the brain area responsible for facial processing – was involved 
in processing postural expressions of affect even when facial 
cues were removed [8]. Indeed, our statistical analysis showed 
that features related to head configuration (e.g., inclination and 
rotation of the head) were very important in discriminating 
between emotions [9] and between nuances of a given emotion 
in particular [5]. This body of work thus suggests that posture 
could be used, if not as an alternative to facial expressions, at 
least in conjunction with facial expressions to provide for finer 
grain appraisals and increased discriminatory power in the 
case of ambiguous or incongruent information. This is not the 
only contribution of posture to our study of emotion in human-
machine interaction, however.  

Beyond acted postures 
Whereas the previous studies relied on acted postures, our 
current research is concerned with real-world scenarios in 
which the expressions can be more subtle and mixed. More 
specifically, the AffectME project 
(http://www.cs.ucl.ac.uk/staff/n.berthouze/AffectME.html) 
considers two scenarios: games involving full-body controllers 
(e.g., Wii), and rehabilitation of patients with chronic pain. 
The game industry has recently introduced full-body 
controllers, presumably to help create a more natural and 
engaging experience for the players. Yet, there have been few 
studies aimed to understand the relationship between body 
movement and engagement. In [10], we used using motion 
capture to quantify differences in movements between players 
using a traditional game pad controller and those using a full-
body controller, and correlated them with measures of 
engagement [11]. In the clinical study, we are applying the 
above framework to automatically discriminate between 
different communicative roles of body movement in chronic 
pain patients. Although pain, as such, is not an emotion, it is 
associated with a set of negative emotions that will express at 
the postural level. Studies in non-verbal behavior and pain 
have shown that movement in patients convey three different 
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types of information: the physical reaction to pain; the 
affective experience related to pain; and the search for 
empathy and attention of solicitous others (e.g., a partner or a 
practitioner). While we are still at very preliminary stage in 
this study, our aim is to create a computational model of body 
movement able to separate such components so as to enable 
the creation of technology to support patients in self-directed 
rehabilitation programs. Motion capture systems provide us 
with a unique source of accurate and rich data to inform the 
design and the validation of models with use in various areas 
of human machine interaction.  
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